Jump to content
Compvision.ru

Leaderboard

  1. Smorodov

    Smorodov

    Главные администраторы


    • Points

      3

    • Content count

      3,833


  2. Pavia00

    Pavia00

    Пользователи


    • Points

      2

    • Content count

      108


  3. OmgZomg

    OmgZomg

    Пользователи


    • Points

      1

    • Content count

      29



Popular Content

Showing most liked content since 03/15/2021 in Posts

  1. 1 point
    7 Изменить размер гораздопроще чем Вы думаете. Чип сенсора как стоял в плоскости физического фокуса так и стоит. Просто отключаются не используются пиксели с края сенсора. Это сделать просто изменив приделы счётчика который перебирает пиксели камеры во время чтения. Когда как масштабирование требует заблюрить соседние пиксели и произвести децимацию оставив к примеру через один каждый второй пиксель. Вот только обычно масштабирование идёт не кратно 2 а через дробные значения к 3/2. Что требует уже усложнения чипов камеры. Так вот при изменении используемой области камеры меняется угол обзора. В математической модели это приводит к изменению математического фокуса. Известно что бочкообразые и подушкообразные искажения определяются параметрами линзы k1, k3 (внутренние параметры камеры) а они в свою очередь зависят от математического фокуса камеры, то они тоже уплывут.
  2. 1 point
    А вот ничего подобного. Там два случая. Изменени плотности и изменение размера матрицы. Как правило задействуется последний что вносит геометрические искажения. В зависимости от формы линзы(рыбий глаз) мы ещё и зум можем поиметь(полу цифровой зум)
  3. 1 point
    Ну, оптика тут остается та же, меняется только плотность пикселей, поэтому думается достаточно будет поменять fx, fy, cx, cy. Дальше все как с исходной матрицей.
  4. 1 point
    Разобрался >>> im.shape (204, 512, 512) >>> cropped= im[:,374:274, 406:309] >>> tifffile.imsave('1.tiff',cropped) >>> cropped= im[:,274:374, 309:406] >>> cropped.shape (204, 100, 97)
  5. 1 point
    Как раз лучше когда не в одной плоскости. По поводу PnP есть неплохой пример здесь: https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/ Для плоских объектов лучше использовать что то вроде: https://github.com/arthur1026/RobustPlanarPose Вот, как то делал что то такое: MarkerTracker.rar
  6. 1 point
    Как я понял из описания: Функция возвращает ROI с корректными пикселями в параметре validPixROI . Alpha -задает порог по используемым пикселям, допустим пиксели ценные (сильные угловые точки), то они пройдут высокий порог, а на однотонном гладком участке точки будут малоценными и будут давать большую погрешность при сопоставлении, их ценность близка к 0. Вот из alpha и отсечет в зависимости от значения.
×