Jump to content
Compvision.ru

Search the Community

Showing results for tags 'сегментация изображений'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Пакет OpenCV
    • OpenCV
    • Новости
    • Вопросы взаимодействия OpenCV + GDI, GDI+
  • Дополненная реальность (ARToolkit и др.)
    • ARToolkit
  • Нейросети
    • Вопросы по нейросетям и ИИ
  • Общие вопросы
    • Обсуждение общих вопросов
  • Другое

Jabber


Skype


Расположение


Интересы

Found 2 results

  1. Привет! Хочу поделится с Вами результатами своей работы по сегментации изображений. Исходные фотографии взяты из статей, стереоизображения произвольные из интернета. За 9 месяцев в графическом редакторе Лубок проведены следующие изменения: 1) Преобразование к палитре цветов. Количество цветов от 2 до 32. Преобразования веду методом медианного среза, преобразую изображение к 256 цветам, затем методом кластеризации 256 цветов привожу к заданному количеству цветов. Подобные преобразования есть в графическом редакторе GIMP и Color quantizer . Gimp выполняет преобразование изображения 24 МП в среднем более 1 минуты, но качество преобразования мне не нравится. Изображение приводится к серым цветам. Более качественное преобразование за счет большого количества ручных настроек выполняет Color quantizer , но время выполнения превышает 15 минут. Наше преобразование по качеству находится между GIMP и Color quantizer и выполняется 0,4 секунды. 2) На основе палитры цветов выполнена сегментация, которую я назвал сегментация медианного среза вначале выполняется преобразование к палитре цветов, а затем сегментация изображения. 3) После сегментации изображения получаю очень большое количество мелких сегментов (на 24 МП фотографии до 2 миллионов сегментов). В Каждом мелком сегменте находятся ближайшие соседи и работает алгоритм присоединения мелких сегментов к более крупным. В программе задается минимальная площадь сегмента от 1 до 500 пикселей. Это позволяет резко сократить количество сегментов. Время сегментации и сокращения количества сегментов для 24 МП фотографии всего менее 3 сек!!! 4) Доработана программа векторизации растровых изображений. В начале мы получаем векторный файл методом "хромого" жука (более подробно об этом методе я напишу статью на хабре), в котором углы между векторами кратны 90 градусов. Описание такого файла получается большим. Для сокращения векторного описания необходимо применять аппроксимацию полученного контура. Аппроксимацию я выполняю ломанной линией. Для дизайнерских работ аппроксимацию необходимо выполнять кривыми Безье, тогда векторное изображение выглядит более эстетично. Но для компьютерного зрения ломанная линия более предпочтительна, потому что проще производить распознавание объектов. После аппроксимации я формирую файл *.svg, который можно просмотреть любым браузером или векторным редактором. 5) Если производить аппроксимацию в чистом виде, каждого сегмента, то между границами сегментов появляются разрывы, особенно при грубой сегментации. Т.к. сегменты аппроксимируются по разному в зависимости от начала сегмента. В моей программе выполняется стыковка границ сегментов, если этот сегмент уже аппроксимирован, то следующий сегмент берет в качестве описания границу ранее описанного сегмента. Этот метод работает, только для 4-х связной сегментации медианного среза. 6) Обработка больших файлов до 8000 х 8000 пикселей. Для обработки больших файлов очень хорошее предложение дал smorodov, делать обработку не каждого пикселя, а через пиксель и строку. В этом случае время выполнения можно сократить в 4 раза. Но мы этого пока не сделали. Пример 1: Результат в векторе: 8.svg Сегментация ректифицированных стереоизображений: исходное изображение сегментация 2 цвета. Минимальный размер сегмента 50 сегментация 4 цвета. Минимальный размер сегмента 50 сегментация 8 цветов. Минимальный размер сегмента 50 сегментация 32 цвета. Минимальный размер сегмента 50 Полученные результаты позволяют получать привязки к сегментам, узнать расстояние до объектов. Время обработки до 65 мс (это одним ядром)- это позволяет производить обработку в реальном масштабе времени 30 кадров в секунду. Пример, из статьи https://habrahabr.ru/company/intel/blog/266347/ : исходное изображение Изображение после сегментации алгоритмом WaterShed полученное в статье результат полученный в графическом редакторе Лубок. 4-х связная сегментация (6 цветов, мин размер сегмента 500) В полученном мной результате монеты отделены от фона, многие монеты разделены друг от друга.
  2. Наткнулся на сегментацию нейросетью. Результат очень впечатлил. Но возник вопрос с быстродействием. Это обработка в реальном масштабе времени? И каким компьютером?
×