Jump to content
Compvision.ru
idrua

Каскад Хаара

Recommended Posts

Перечитал много разных публикаций, но не нашел ответа на вопрос высоты/ширины (-w 20  -h 20). Значит ситуация следующая: картинки размеров 400 на 300, сам объект  имеет размер 100 на 130. Во всех примерах размер объекта минимален. Что-то из серии 20 на 20 или 30 на 10. Собственно, вопрос. Я должен уменьшать свои картинки, чтобы объект принял нужные размеры? Или как? В одной публикации видел, что объекты еще больше чем у меня (300 на 300), а значения высоты и ширины в параметрах обучения ставят 20 на 20. Или это абстрактные значения в  параметрах? Где читать или, может, кто подскажет по своему опыту?

Заранее спасибо!
 

opencv_createsamples.exe -info E:\BAZAS\Sova\Good.dat -vec samples.vec -w 20 -h 20

 

Share this post


Link to post
Share on other sites

Если размер объекта у тебя никогда не будет меньше 100 пикселей, то можно ставить минимальный размер и больше, чем 20х20, тут проблем у меня не было.

P.S. В OpenCV 4 тренировка каскадов уже depricated, а opencv_createsamples удалена из сборки. Фактически есть, но закомментирована и, если включить, не собирается из-за чистки старого API. Так что надо подумать, насколько необходимо использовать каскады Хаара в будущем.

Share this post


Link to post
Share on other sites
18 часов назад, Nuzhny сказал:

Если размер объекта у тебя никогда не будет меньше 100 пикселей, то можно ставить минимальный размер и больше, чем 20х20, тут проблем у меня не было.

Размер объекта относительно статичен +- 20 пикселей. Больше на сколько? 30х30, 40х40, 80х80. Насколько я понял, чем больше размер объекта, тем дольше ждать результат.

18 часов назад, Nuzhny сказал:

P.S. В OpenCV 4 тренировка каскадов уже depricated, а opencv_createsamples удалена из сборки. Фактически есть, но закомментирована и, если включить, не собирается из-за чистки старого API. Так что надо подумать, насколько необходимо использовать каскады Хаара в будущем.

Думал. Стандартными средствами OpenCV я детектирую с точностью 90%, но это не всегда устраивает пользователей. Хотелось уйти в сторону DL, но ПК слабые, не тянут. Какие еще альтернативы?

Share this post


Link to post
Share on other sites

Лучше 80х80. Далее идёт детекция через cv::CascadeClassifier::detectMultiScale, где можно подобрать правильный коэффициент скейла. Тренироваться может долго, но тут никуда не деться.

В плане альтернатив из коробки есть ещё SVM+HOG, но это будет уже медленнее Хаара.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Recently Browsing   0 members

    No registered users viewing this page.

×