Jump to content
Compvision.ru

Leaderboard


Popular Content

Showing most liked content since 05/27/2019 in all areas

  1. 1 point
    Это видео облегченные условия. Здесь прекрасно работает мой детектор движения. Но значительно быстрее, обрабатывает 25 кадров с загрузкой 15%. Но с резким изменением освещенности он не работает.
  2. 1 point
    я бы поступил банальным образом. Обучил сетку искать головы, адаптировал под железо. Обучение на разных цветовых моделях. Пример как это у меня работает (на arm)
  3. 1 point
    А что вообще есть на входе? Обычно трекинг понимается в 2-х ипостасях: 1. Visual objects tracking (VOT). Всё это направление подразумевает, что на первом кадре объект как-то нашёлся (детектором, классификатором или был выделен оператором), а дальше на каждом кадре его ищет исключительно сам трекер. Тут можно посмотреть на модуль tracking из opencv_contrib, в частности на CSRT оттуда. Другой классический метод - это STAPLE, но лидеры на сегодняшний день - сиамские нейронные сети (там и датасет, и результаты, и победители). 2. Tracking by detection. Тут принцип другой: непрерывно на видео работает детектор, объект(ы) находится достаточно регулярно. Если объект не находится, то его траектория интерполируется (фильтр Кальмана), он доискивается с помощью VOT и т.д. Когда объект снова находится, то срабатывает какой-то re-id, чтобы узнать, что найден именно тот самый объект (re-id - это сравнение размеров, гистограмм, нейросети и т.д.). Если используется трекинг сразу нескольких объектов, то необходим алгоритм межкадрового связывания: для двух кадров Венгерский алгоритм или аналоги, но популярнее сейчас поиск максимального потока в графе, например.
×