Перейти к содержимому
Compvision.ru

BeS

Пользователи
  • Количество публикаций

    343
  • Зарегистрирован

  • Посещение

  • Days Won

    42

BeS last won the day on April 11

BeS had the most liked content!

Репутация

52 Эксперт

О BeS

  • Звание
    Эксперт
  1. 1) Запатентовать можно конкретный подход, а не идею. Т.ч. патент, в котором больше 2-3 шагов в алгоритме, обойти обычно не сложно, путем модификации пайплайна. 2) Патент полученный в России - это вообще не особо серьезная штука, т.к. Россия - не особо благоприятный рынок для технически сложных продуктов. А для западного рынка этот патент ничего не значит.
  2. Решение оказалось очень простым: и картинки тупо сваливаются в контейнер как есть, без всякой интерполяции между кадрами.
  3. Задача в том, что есть пачка видео доставшихся в наследство(переснять которые не представляется возможным), которые на зоопарке архитектур могут давать разные результаты при различиях в конфигурации ffmpeg'а...в png'хи порезать видосы не вариант - т.к. их ооочень много, остается только перекодировать в какой-то формат, где кадры отдаются всегда одинаково, незаивисимо от бекенда
  4. Всем привет, Как многим известно, под linux opencv активно использует библиотеку ffmpeg для чтения видео, а эта библиотека, в зависимости от окружения и кодеков, которыми записаны видео, может отдавать не bit exact'ные кадры. И возникла необходимость закодировать видео так, чтобы перекодирование прошло без потери качества и в любом окружении выдавались одинаковые кадры. Судя по всему, для этой задачи мне нужно использовать x264 кодек, но вот как нарулить правильное сочетание флагов, чтобы пожалось всё без потери качества - никак не соображу. Может кто-то сталкивался с такой проблемой и имеет готовое решение?
  5. Детектор кругов

    http://docs.opencv.org/trunk/d7/d5d/houghcircles_8cpp-example.html работает наверняка дерьмово, как и все эти HoughBased свистелки.
  6. Вроде-бы HMM уже "того"...deep learning их сместил. Может LSTM'ами попробовать?
  7. Как думаете, что за метод ?

    А что значит "для нейронки слишком четко"? Вроде бы стилизация изображений уже довольно качественные результаты дает...
  8. Работа с float изображением

    Заблюрить и посчитать производную по Y?
  9. ENet

    Зная угол крена БПЛА (IMU по идее должен уметь его давать), можно просто довернуть картинку так, чтобы крен стал нулевым и запускать сегментацию на выровненой картинке.
  10. ENet

    В общем случае операция свертки не инвариантна к повороту. У сеток есть только инвариант к трансляции и нечувствительность к слабым поворотам за счет всяких пулингов. з.ы. можно, кстати, попробовать саму картинку доворачивать в соответствии с данными от IMU...так может быть даже точнее получится за счет меньшей вариативности в таргетном распределении...
  11. ENet

    Сверточные сети не инвариантны к повротам, т.ч. нужно аугментировать данные.
  12. А там можно пихать блобы разных размеров, или есть какие-то ограничения на тему того, что мы суем в LMDB?
  13. Спасибо за семпл) Я правильно понимаю, что у тебя ландмарки лежат тоже в виде картинок(маска с отмечеными точками?)?
  14. Всем привет, Возник такой вопрос: а какой метод загрузки данных и формировани батчей сейчас является "best practice" в TensorFlow? И кто какие контейнеры использует для хранения картинок и метаинформации к ним? Судя по этой странице из официального гайда, как-то там народ не заморачивается насчет быстрых контейнеров, типа HDF5 или LMDB...и не совсем понятно, как при таком подходе грузить сложную метаинформацию типа боксов для object detection etc.
  15. ENet

    В 8 бит вроде бы уже умеют без деградации качества квантизовать, при бинаризации уже серьезно качество плывет. Там есть модуль в contrib'е у TF, slim называется...вот народ его активно юзает в качестве ванильного API.
×